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Abstract. Feasible sets in semi-infinite optimization are basically defined by means of infinitely
many inequality constraints. We consider one-parameter families of such sets. In particular, all defin-
ing functions — including those defining the index set of the inequality constraints — will depend on
a parameter. We note that a semi-infinite problem is a two-level problem in the sense that a point is
feasible if and only if alglobal minimizers of a corresponding marginal function are nonnegative.

For a quite natural class of mappings we characterize changes in the global topological structure
of the corresponding feasible set as the parameter varies. As long as the index set (-mapping) of the
inequality constraints is lower semicontinuous, all changes in topology are those which generically
appear in one-parameter sets defined by finitely many constraints. In the case, however, that some
component of the mentioned index set is born (or vanishes), the topological change is of global
nature and is not controllable. In fact, the change might be as drastic as that when adding or deleting
an (arbitrary) inequality constraint.
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1. Introduction

In this paper we consider feasible sets of semi-infinite optimization problems that
depend on a real parametee R; semi-infinitemeans that these sets are subsets
of afinite-dimensional space and the number of inequality constrairitfirste.
Semi-infinite optimization became a very active research topic in the last two
decades; for a recent survey we refer to the book [16] that contains several tu-
torials as well as overview articles on the theory, numerics and applications in
semi-infinite optimization.

As a starting point of this paper, we consider the feasible sets

M) CcR"
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of a parameter dependent semi-infinite optimization problem
P() Minimize ¢(x,t) subjecttox € M(z),

where the parameterc R is varying in a specific set under consideration.

Several practical applications and mathematical techniques (e.g. homotopy
methods) lead to parametric semi-infinite optimization problems; see, for example,
the survey papers [5] and [15]. Recent work on parametric semi-infinite optimiza-
tion is done in [4, 12, 13, 17].

In global optimization one is often interested in the sets

{(x,1) e R*" x R | x is a global (respective local) minimizer a? (¢)}

consisting of global (respectivall local) minimizers of P(¢) as the parameter
¢t varies. In [4, 13] the set of minimizers of a one-parameter semi-infinite opti-
mization problem has been studied extensively under generic conditions and it was
shown that the appearance of singularities in the (one-parameter) set of minimizers
is closely related to topological properties of the feasible &&tS.

In this paper we will investigate the topological structureMt:) and, for a
quite natural class of constraints which descilf&), we will characterize possi-
ble topological changes in the structureMfr) as the parametervaries.

Let R", n > 1 ben-dimensional space endowed with the Euclidean norm
|| - |I. For an open subse®? C R” let C?(O,R), p > 1 be the set ofp-times
continuously differentiable functions from to R. If confusion is excluded, we
write C? instead ofC? (¢, R). By Df (x) we denote the derivative (row vector) of
f atx € O (D,1f(x) denotes the vector of partial derivatives ofvith respect to
the components of the subvectdrof x). For f € C?(®, R) the second derivatives
D?f(x), D% , f(X) ... are analogously defined.

The sets under consideration are of semi-infinite type and have the following
standard form:

MHECUV (= (x eR" | h;(x,1)=0, iel, G(x,y,1)>0, yeY YV (1)},
(1.1)

where
e 1 € Ris the parameter,
o/ ={1,...,m}ym <n,H=(hy,... ,hy), h € CPR" x R,R),i €I,
yeR,GeCPR" x R" x R, R),
e YUy ={yeR |u(y,t) =0, £ € A, v(y,t) >0, k € B},
e A={1,...,al,a<r, U= (ug,... , uy),u, € CPR" xR, R), ¢ € A,
B={1,...,b},V=(v1,...,v,) andvy, € C°(R" x R,R), k € B.
Obviously, we have € M#-6.U-V)(ry if and only if
e hj(x,t)=0,i € I,and
¢ all global minimizers of the so-callebbwer level problem

Minimize G(x,y,7) subjecttoy € YUV (r)



ONE-PARAMETER FAMILIES OF FEASIBLE SETS IN SEMI-INFINITE OPTIMIZATION 183

are nonnegative.

Unless stated otherwise, all functions appearing in (1.1) will be once continuously
differentiable. If we consideM 7-¢.U:V)(t) andYY-V)(¢) for a fixed vector func-

tion (H, G, U, V) and(U, V), we sometimes writd/ () andY (¢), respectively.

The goal of this paper is to investigate possible changes in the topological
structure ofM#-G.U:V) (1) for increasing parametet Throughout the paper we
will assume that the index s&t¥-V)(¢) is compact. (Note that the standard form
(1.1) also includes the case with finitely many inequality constraints of the type
G(x,y,t) > 0.) The cardinality ofr V*¥(¢) might be infinite. Consequently, the
set MH:G.UV) (1) is defined by means of a finite number of equality constraints
and perhaps aimfinite number of inequality constraints. In the case diirate
number of constraints, changes in the topological structure of the feasible set have
been studied in [9]. The ideas from [9] may be applied to describe local changes
of YWV (1) since the latter set is indeed defined by means of a finite number of
constraints.

We will discuss the following questions:

e When does a change in the structureYéf:")(¢) induce a change in the

structure ofp #-G.U.V) ()2

e When does the structure af*:¢-U-V)(¢) change although the structure of

Y YY) (1) remains unchanged?
e Which changes in the topological structurepf?-¢-U-V)(r) can be classified,
where(H, G, U, V) is taken from a quite natural class of mappings?
The following example illustrates that a topological classification of a change in
the structure o1 #:6-U:V) (1) is not always possible.

EXAMPLE 1.1. Assumethat=1,a=0,b=1and, henceY(t) ={y e R |
v1(y, t) > 0}. Moreover, lett; C R be a compact interval; € R \ Y; and assume
thatY(r) = Yy forr < ¢, Y(r) = Y1 U {y} and letY (¢) consist of two connected
components for >  (see Figure 1).

Consequently, as the paramet@ncreases and passes the valube additional
constraintG (x, y, t) > 0 joins the description a#/(r) atr = z; i.e. we have

| Mi(o) if t<t
M(I)_{Ml(f)ﬂMz if =1,

whereM; = {x e R" | G(x, y,t) > 0} and
Mi(t) ={x e R" | hi(x,t) =0,iel, G(x,y,t) 20, y e Y(1)}

(here, we do not specify the constraifitsx,7) = 0,i € I andG(x, y,t) > O,

y € Y(¢)). However, the structure a¥f, might be quite arbitrary and, hence, the
change in the topological structure frab(z), ¢ < ¢ to the intersection (1) =
M, (1) N M, cannot be classified in general (cf. Figure 2).

As becomes clear later on, the (dis)appearance of componelit§)ofannot
be excluded generically.
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Figure 1.

Ml(i):

My (F)nMy;:

Figure 2.

The paper is organized as follows. Section 2 provides some notation and prelim-
inary results. In Section 3 we summarize the main results from [9] on topological
changes in the structure BfY-")(¢). Section 4 includes a genericity theorem on bi-
furcation points and the definition of appropriate subsets of the considered function
spaces. Finally, in Section 5, classifications of topological changes in the struc-
ture of MH-G.U-V) (1) are given, wher¢H, G, U, V) is taken from an appropriate
natural subset of mappings.

These classifications of a topological change in the structurd &f¢ V") (r)
locally around a considered parameter valgan be summarized in the following
way:
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e If the set-valued mapping — Y (¢) is not lower semicontinuouat ¢ (or,
in other words, a new component ¢fy,7) | y € YUV ()} is born lo-
cally), then the topological change in the structureMf?-¢:U-V)(¢) might
be arbitrarily drastic and cannot be classified in general (as illustrated in
Example 1.1).

o If the set-valued mapping+— Y () is lower semicontinuouat 7, then there
are two possibilities:

— EitherM:6:U-V) 1y and M -G U-V) () are homeomorphic for atl near
t, i.e. the topological structure remains unchanged,

— or the changes in the topological structureMf?-¢-U-V)(¢) are those
which also appear in one-parameter feasible sets of finite optimization
problems (which are defined by finitely many equality and inequality
constraints) and which are characterized in [9].

2. Notations, preliminary results

This section lists several notations and preliminary results which we will use later.

Lower and upper semicontinuity

ForK c R",y e R"andy > Olet

B,y ={yeR [|ly—=yl<v}
d(y,K) =inf{|ly —yll, ye K} and
B,(K)={yeR |d(y,K) <vy}.

We recall the definitions of lower and upper semicontinuity of a set-valued mapping
(cf. [1]).

The mapping — Y(¢) is lower semicontinuougbriefly: Isc) at 7 if for any
open set9 C R” with @ N Y (r) # ¥ there exists a neighbourhoddof 7 such that
ONY() # P whenever € V.

The mapping — Y (¢) is upper semicontinuoubriefly: usc) at 7 if for each
y > 0 there exists a neighbourhodd of ¢ such thatv (r) c B, (Y (r)) whenever
reV.

As a consequence of the latter definition it follows thaf) is compact and the
mappings + Y (z) is usc atr if and only if there exists a neighbourhodd of t
and a compact sét C R" suchtha (r) Cc Y forallt € V.
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Constraint qualifications

The Mangasarian—Fromovitz constraint qualificatigiFCQ) is said to hold at
y € YWY)(7) if the vectorsD,u,(y, 1), £ € A are linearly independent and there
exists aw € R” satisfying

Dyuy(y,t)w=0, Le€A
Dy (3, 0)w >0, keB 5, 1),

whereB!"(7,7) = {k € B | v(§,7) = 0}. Define

MFUV (i) = {y e YUV (@) | (MFCQ) holds aty € Y"V)(7)} and
MFYY) = {(y,) e R" xR |y e MFYY)(1)}.

The Linear Independence constraint qualificatiohlCQ) is said to hold aty <
Y@V)(7) if the vectorsD,u,(7,7), £ € A, Dyv(3,7), k € B (3,7) are lin-
early independent.

The Extended Mangasarian—Fromovitz constraint qualificati@MFCQ) is
said to hold ak € Ht-‘l(O) if the vectorsD, h;(x,1),i € I are linearly independent
and there exists & € R” satisfying

D.hi(x,1)é =0, iel
D,G(x,y. D) >0, yev®UV . 1),

whereH-(0) = {x e R" | h;(x,7) =0, i € I} and
Yo UV (&, 1) =y e YY) | G, y,T) =0}

The Extended Linear Independence constraint qualificatiBhlCQ) is said to
hold atx € M:GU.V)(t) if the vectorsD,h;(x,7),i € I, D,G(x,y,1), y €
y{UV-9(z, 1) are linearly independent.

Furthermore, define

MIEUY) = {(x,1) e R" xR | x € MHGUV (1)),
HX0) ={(x,/) e R" xR | x € H %0)} and
YUY — (3,1) eR" xR |y e YUV ().

If no confusion is possible we will delete in the remainder of this paper the upper
indices inBy" (7, 7), YUV 9 (%, 1), MHGUY) etc,

The C?-topology

In Sections 3, 4 and 5 we will consider several subsets of the underlying func-
tion space that will be endowed with the strofg-topology, p = 0,1,2,...
which is denoted by’ (for details see [7, 11]). For finite a C?-neighbourhood
of f € CP(R",R), P > pin CP(R",R) consists of all those functiong €
C?(R", R) whose pointwise difference of the derivatives ofand f up to order
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p is controlled by a continuous positive functiet) : R* — R. Hence, a typical
Cl-base neighbourhoot® of the zero function inC*(R”, R), P > 1 is given
bye : R" — (0,00) as®* = {f € C"R",R) | |f (2] + X1 |1Dy f(2)]
< ¢(z) forall z € R"}. A typical Cl-base neighbourhood of € C*(R",R) is
f + #¢. The C!-topology of the product spac€” (R",R?) (= CP(R",R) x
-« x CP(R", R), ¢times is the induced product topology. Tl&&°-topology for
C>*(R", R) is generated by means of the union of the bases focCthéopology,
p=012....

The subsequent lemma follows directly from [3, Theorem B and Remark 3.4]
and [8, Corollary 1].

LEMMA2.1. Letr € R, (U,V) € CYR" x R,R***) (i.e. U € CYR" x

R,R% and V e CYR" x R,R") as well as§ : R — (0, 00) be a given
continuous positive function. Furthermore, assume thét")(f) is a compact
set withYW-Y () = MFY-Y)(r) and that the mapping — YYY)(¢) is usc
at 7. Then, there exists @l-neighbourhood? of (U, V) in CY(R" x R, Re*?)

and a neighbourhoo& of 7 as well as for eachU, V) € ¢ and eaclr € V a

homeomorphism

¢(U,V,t) . Y(U,\’/)(t—) N Y(U,V)(t)
satisfying||¢ -V (y) — y|| < 8(y) forall y € YUV (7).

LEMMA 2.2. [3, Lemma 2.4]

Let7 € R, (U, V) € CYR" x R,R**?) and €1, G, C R’ be disjoint closed
subsets. Furthermore, 1€, V) € C1(R" x R, R“*?) belong toF (G, @) if and
only if

() (U, V)und(U, V) coincide onC; x {7} and
(i) (LICQ) holds at eachy € YUV () N @,
Then,F(Cy, Cy) intersects everg'l-neighbourhood ofU, V).
The following corollary is an easy consequence of the latter two lemmas.

COROLLARY 2.3. Lety > 0and assume that € M FV-V)(r). Then, there exist
a neighbourhood of # and aC2-neighbourhood? of (U, V) in C1(R” x R, R**+?)
such that for each € V and each(U, V) € ¢ thereis ay(U, V,t) € MFY-V)(¢)
satisfying||y(U, V,t) — y|| < y.

The Reduction Ansatz

In the remainder of Section 2 we assume that all appearing functions belong to
C2. Let(H, G, U, V) be fixed. We recall the so-called Reduction Ansatz at a point
X € M(t) (cf. [6, 14, 2] for detalls).
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Obviously, eachy € Yy(x,1) is a global minimizer ofG(x, -, t_)ly(t—); thus,
there exist realag > 0,ay, £ € A, By = 0,k € Bo(y, t )—not all vanishing—such
that

oDy G (%, 3.1) = > oy Dyuy(3.7) — Y BDyw(3.5)=0.  (2.1)
teA keBo(3,1)
In particular,y € Yo(x,7) is called anondegenerateninimizer if the following
three conditions are fulfilled:
e (LICQ) holds aty € Y (7).
Then, after fixingrg = 1 the realsy, = a,, £ € A, B = B, k € Bo(¥,1) in
(2.1) are uniquely determined;
e B #0,k € By(y,1), and

- 7 - IN\T
e the matrix( Ly, 1) E(,1)

EG.7) 0 > is nonsingular, where

L(3.T) = D2G(&,5.1) — Y & D2uy(3.1) — > BD¥u(y.7)
teA keBo(y,7)

and the rows ofE(y, 1) are the derivatives of the active constraintsy at
Y():

Dyui(y,t), L€ A

Dyvi(y,1), k € Bo(y,1)

Now, we consider the mapping
T:R x RY x RIBOD y R? x R —» R x RY x RIBoG-DI
(where]| - | denotes the cardinality) defined as

DyG(x,y, 1) — > aiDyus(y,t) — Y. BDyu(y, 1)
leA keBo(3,t)
T )=\ yyy.1), tecA :

ve(y, 1), k € Bo(y, 1)
wherea = (o, £ € A), B = (B k € Bo(y,1)). Obviously, we have'(y, a, B,
x,t) = 0andD, 4T, &, B, x,t) is nonsingular. By the Implicit Function
Theorem, there exist neighbourhoods of x and @, of t as well as uniquely
determinedC-functions(y(x, t), @ (x, t), B(x, 1)) on @1 x O, satisfying

(G, 1), a(x, 1), (%, 1) = (,a B) and

~ (2.2)
T, 0),a(x,1),Bx,1),x,t) =0 forall (x,7) € Q1 x O».
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Furthermore, the construction yields fgfx, 1) = G(x, y(x, t), t) that

g € C%(01 x 0y, R).

The Reduction AnsatzRA)is said to beapplicable atx € M(r) if eachy €
Yo(X, 1) is a nondegenerate minimizer.

Now, let € R be fixed and assume thgtz ) is compact, the mapping— Y (¢)
is usc at and (RA) is applicable at € M (¢ ). Then, the set81(¢), r neart can be
described locally around by finitely manyC?-constraints indeed, the se¥y(x, 7 )
is finite and—forYy(x,7) = {y%,..., y?}—there exist neighbourhood$, of x
and@, of ¢ as well as functions

F i, ) €01 x O F(x,t)eR, j=1....,q (2.3)
defined analogously td(x, 7) in (2.2) such that for all € 9,:

MHNOL={x€ Oy hi(x,1)=0,i€el, g/(x,)) 20, j=1,...,q},
(2.4)

whereg’/ (x, 1) = G(x, y/ (x,1),1), j=1,... ,q.

Bifurcation points

As we will see in the following sections a change in the topological structure
of YUV (1) andMH:0:U.V) (1) is closely related with the violation of (MFCQ) and
(EMFCQ), respectively.

DEFINITION 2.4.
(i) Apoint (y,7) € YUV is called abifurcation point of YU-V) if (y,7) ¢
MFUY) Lety, " denote the set of bifurcation points Bf"") andy,,"" (7 ) =

[y eyU"@) | (.i) ey, VyforieR.
(i) (7.7) € ¥5,"" is callednondegeneraté the following three conditions
are satisfied:
e The set{Du,(y, 1), £ € A, Dvu(y,1), k € Bév)(y, 1)} is linearly indepen-
dent. In that case there exist reals ¢ € A, B, > 0,k € B{" (3, 7)—unique
up to a common multiple and not all vanishing—such that:

YoaDu (3, + Y BDyw(3,1) =0

tea keBg (3.7)

e B >0,ke By 1)and
o Wi(3.1)" D2L1(y,1)Wi(3, 1) is nonsingular, where

L1, 1) =) GG+ Y B D)

teA keB (5.7

andWy(y,r)is a
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(r,r +1—a—|B{" (3, 7)])-matrix whose columns form a basis of
{y €R" | Dyuy(3,7)y =0, L € A, Dyu(3,7)y =0, k € By (5, 7)}.

DEFINITION 2.5. LetYW'V)(t) be a compact set and the mapping- Y V-V (r)
be usc at.

(i) A point (x,r) € MH-G.U.V) s called abifurcation point of M H-G.U.V),
if (EMFCQ) does not hold af € MH:CUV (7). Let My, *""" denote the set
of bifurcation points ofM #-¢-U:V) and M, *""V(7) = {x € MIGUV(F) |
(x.7) e My UV fori e R.

(i) &.7) e My %" is callednondegeneraté the following four condi-
tions are satisfied:

e The set{Dh;(x,7),i € I, D G(X,y,1), y € Y"'V(%,1)} is linearly

independent. In that case the 81" (x, 7) is finite and fory """ (x,7) =
{31, ..., 7} there exist real;, i € I, >20,j=1,...,g—unique up to
a common multiple and not all vanishing—such that:

q
D hiDhi(R 1)+ Y ;DGR 3, 1) =0;
iel j=1

° llj >0,j=1,...,q;

e (RA) is applicable ak € M#-6-U-V)(t) and the corresponding functiofs
andg’/, j = 1,...,q are defined as in (2.3) and (2.4), respectively, as well
as

o Wo(x,7)T D2Ly(%, F)Wa(X, 1) is nonsingular, where

q
Lo(X, 1) =Y dihi(%, 1)+ Y fij8) (%, 1)
iel j=1
andWs(x, 1) is an(n, n + 1 — m — g)-matrix whose columns form a basis of
{(x eR" | Dih;i(%,)x =0,iel, D,GX,y/,1)x=0, j=1,...,q).
Note thatD, g/ (x,7) = D,G(x,y/, 1), j=1,... ,q.

3. Deformation of Y (¢)

This section surveys several results from [9] about changes in the topological
structure ofy YY) (+) when a nondegenerate poiit 7 ) € Ylff,] V) appears.

REMARK 3.1. In [9] the class of bifurcation points is slightly broader than that
used here. In fact, all points at which (LICQ) is violated are considered in [9]. How-
ever, if (LICQ) is violated but (MFCQ) is satisfied, then those points do not change
the topological (i.e. homeomorphy) type of the set, see for example Lemma 2.1.
Therefore, we do not take such points explicitly into account.



ONE-PARAMETER FAMILIES OF FEASIBLE SETS IN SEMI-INFINITE OPTIMIZATION 191
We start with the following lemma which follows from [9, Lemma 1.1].
LEMMA 3.2. The set
F1={(U.V) e C(R" x R,R**) | each(y,1) € ¥,,"" is nondegenerate
is C2-open/dense €2,

If (U, V) e ¥, then the seYb(;/’V) of bifurcation points is a discrete set. Through-
out this section letU, V) e C? be fixed.

Types

Let(y,1) € Y, be nondegenerate witlBy(y, 7 )| = b and let the notations be
chosen as in Definition 2.4. The¢y, ¢ ) is one of the following two types.
Typel: by = 0.

Type-numbers; =r+1—a
8> = number of positive eigenvalues of
D, L1(3, D)Wi(§, 1) DZLA(F, D) Wa(F, 7).

(Obviously, we haveD, L1(y, 1) # 0.)
Subtype 1la:8; = §, oré, = 0.
Subtype 1b: §; # 6, ands, # 0.
Type2: by > 1.

Type-numbersé, =r +1—a — by
8> = number of positive eigenvalues of
Wi(3, 1) DoLa (Y. 1) Wa(§. 1)
d3=bg—1
84 =signD; L1(y, 1).

Subtype 2a:5, = 0.
Subtype 2b: §, # 0.

Topological changes

Assume in the remainder of this section thatc R’ is a compact subset,
h < nandY (@) C Y for all t € [t1, ,]. We will describe possible changes in
the topological structure of (¢) ast varies froms; to ¢,. Here, we assume that
Yy, N (R x [t1, 12]) is either empty or a singletof(y, ¢ )} with 7 € (11, 1) and
(y, 1) nondegenerate. For the used topological concepts we refer to [10, 18].

Let D* and S* denote a homeomorphic image faf € R* | |z < 1} and
{z € RF1 | |1zl = 1}, respectively, whers—* = @. Furthermore, letM, be a
(k 4+ £)-dimensional manifold with boundayM;, and S¥ x D¢ be embedded in
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My \ dM1. We obtain a new manifolod, by deletingS* x D¢ from M, and put

D¥1 x §1in its place via homeomorphismsD ! — §* and st — 9D".

If N1, M, are manifolds homeomorphic with(,, M, we say thatW; is obtained

from Ny by deletingS* x D¢ and implantingD**+1 x $¢-1,

The following theorem describes the possible topological changes (cf. Remark 3.1
and [9, Theorems 5.1, 5.2 and 5.3]).

THEOREM 3.3.
(i) LetYy, N (R" x [t1, t2]) be empty. Ther/ (t;) >~ Y (t,) (where ~’ means ‘is
homeomorphic with’).

(i) Suppose that,, N (R" x [t1,12]) = {(3,1)} witht € (1, 12) and (¥, 1)
nondegenerate.

If (3, 1) is of Typel (81, 82) thenY (¢,) is obtained fron¥ (¢,) by deletings®2—1 x
D%~% and implantingD? x §%1—%2-1,

If (y,1) is of Type2 (81, 8>, 83, 1) thenY (rp) is homotopy-equivalent t&(,)
with D% attached.

If (y,1) is of Type2 (81, 8>, 83, —1) thenY (1) is homotopy-equivalent tb(z,)
with D% attached.

REMARK 3.4. Note that Theorem 3.3(i) is an immediate consequence of
Lemma 2.1. As an illustration of the topological changes described in Theorem
3.3(ii) we consider the case that, v, € C*. Then, there exists a smooth local
coordinate transformatio@ of the form

Q : ()’, t) — (Ql(y’ t)’ QZ(t))’ DQZ(t) >0

such thatr” can locally be described arouid, ) € Y;, as follows (cf. [9]):
o (y,1) is of Type 1(81, 8):

82 81
r==2 v+ 2
v=1

v==82+1

o (y,1) is of Type 2(81, 82, 83, 84):

82 81 81463
v=1 v=82+1 v=41+1

The construction yields that a nondegenerate pgint) € Y, of Subtype 1a or
of Subtype 2a is a local minimizer (local maximizer)®ty, ¢)|y with ®(y,7) =
t; then, a connected componentlbfs created locally aroungy, 7 ) for increasing
(decreasing) values af We have seen in Example 1.1 that in this situation the
topological structure oM () might change drastically and almost arbitrarily.

If a nondegenerate poir,7) € Y, is of Subtype 1b or 2b, the@y, ) is
neither a local minimizer nor a local maximizer &y, ¢)|y . In particular, the
following lemma holds.
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LEMMA 3.5. Letr € R and assume that eadly, r) € Y, is nondegenerate and
of Subtypelb or 2b. Then, the set-valued mapping> Y (¢) is Isc atz.

The latter lemma does not assume the compactnegs:of The proof of this
lemma follows foru,, vy € C*, £ € A, k € B from Lemma 2.1 and Remark 3.4
and in the considered general case from the additional factthas C1-dense in
Ct (cf. [7]).

4. The Genericity Theorem and the sets CUSC and BAP

In this section we show that nondegeneracy of bifurcation points gereeric
property. Recall that a subset of a Baire space is called generic if it contains the
intersection of countably many open and dense subsets. In particular, generic sets
are dense (cf. [7, 11]).

Furthermore, we define the natural subsets CUSC and BAP which will play a
crucial role when considering deformationsaaf”-6-U:V)(¢).

The Genericity Theorem

THEOREM 4.1. (Genericity Theorem).
LetC®(R" x R, R™) x C®(R" x R" x R, R) x C®(R" x R, R***) be endowed
with theC°-topology. Then, the set

F2={(H.G,U,V) e C* | each(x,7) e M;, """ and each
(3,7) € Ylfll,”v) is nondegenerate

is generic. In particular,#; is C°-dense.

Proof. The C*-density of #; follows from the fact thatC> endowed with
the C:°-topology is a Baire space. Recall (cf. [11]) that the Qete M(k, ¢) |
rank®) = d} is a C*°-manifold with codimensionk — d)(¢ — d) for d =
0,...,min{k, £}; hereM(k, £) denotes the space of all red, ¢)-matrices. We
will restrict ourselves to a sketch of the proof which usedvhuti-jet Transversal-
ity Theorem(cf. [11, Chapter 7]). Lety e N(N = {0,1,2,...}) and letB/ C B
with |B/| = b;, j = 1,...,q be arbitrarily chosen and consider the following
(multi) 1-jet extension:

1 l,tl 2 2,t2

(xXx=, Y=, 0, x5, y5, 15, .., x?,y9,t9) >
oLoyb e e Y, Dt e, ue O, Dy LY,
leA keB

kLY, DL Y, L GGy i, DG (L, Y Y,

iel

{(x‘i,yq,ﬂ) .......... LG9, 9,17y, DG(x9, y4, 17)).
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Let us now focus our attention to the points',*) e M, *""" satisfying
e8Pt i) = g with Yo« et iy = (vt Ly, B G 1) = BY,
j=1,...,q. Then the following system of equations has to be satisfied:
oy eYUVh, j=1,...,q:
ue(y/, 1)) =0, L € A, v (y/,1/)=0, k€ B.
q
Number of equationsja + >_ b/.
j=1
o v e OV 1), j=1,....¢q
DyG(x/, y/,t7)
rank| Dyu,(y/,t/), L€ A | <a+1b/.
Dyv(y/,t7), k € B

Minimal number of equations, i.e. for ragk.) = a + b/: gr — ga — i bl.
j=1
e Coupling equationst/ = x/*%, ¢t/ =¢/*1 j=1,... ¢q—1:
Number of equationsn + 1)(¢ —1) =ng +qg —n — 1.
e xle M(H,G,U,V)(tl):
hixt,thy =0, iel, Gty ,th =0, j=1,...,q.
Number of equationsn + g.
e (ELICQ) does not hold at* e MH-G.U.V)(11y:
D.hi(xt 1Y, iel
rank( D.G(xY v/, 1Y, j=1,... ,q) smtq-1
Minimal number of equations, i.e. forrak.) =m+qg—1:n—m—q+1.
Altogether, we obtainy(n + r + 1) equations, and the available dimension is
g(n + r + 1), too. Any violation of the nondegeneracy 6¥,7) gives rise to
an additional equation(perhaps using second-order terms in the corresponding
multi 2-jet extension). However, in the transversal case, we would satisfy more
independent equations than the available number of dimensions; consequently, this
will be excluded in the transversal case whiclgénericby virtue of the Multi-jet
Transversality Theorem. Next, note that there are countably many possibilities for
choosingg e NandB’/ c B, j = 1,...,q. This proves the theorem taking into
account that the bifurcation points fro’:") can be treated analogously. O

REMARK 4.2. The proof of Theorem 4.1 shows that the set
(H.G.U.V)e F| vy, V(D) + M, 5"V (@) < 1 foreach? € R}
is also generic.

REMARK 4.3. Let us return to the Subtypes la and 2a of a nondegenerate point
(7.7) € ¥, and the corresponding possibility of an arbitrary change in the
topological structure oM :6-U-V) () att = ¢ as illustrated in Example 1.1. Note
that these two subtypes cannot be excluded generically!
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The set CUSC
We introduce the following set CUSC (abbreviation for ‘compact usc’, cf. [13]):

CUSC={(U, V) € CO(R" x R, R*+")|Forallf e R: YU'V)(F) is
compact and — YY) (¢) is usc atr.

Itis easily seen thatl/, V) € CUSC is equivalent to the fact that there exists for
each compact s@t Cc R a compact set such thatr V-V)(s) c Y forallt € T.

We already used the upper semicontinuity in Lemma 2.1 and for the local de-
scription of M#-G.U:V) (1) under (RA) in (2.4). Furthermore, we characterized in
Section 3 possible changes in the topological structurB®f” () under the as-
sumption that there exist a compact gett R andr, 1, with 11 <  such that
YUYty c ¥ forall ¢ € [t, 12].

LEMMA 4.4. The set CUSC i€%-open inC°.

Proof. Let (U, V) € CUSC. We will construct aCc®-neighbourhoods of
(U, V) such thaty ¢ CUSC.

CompactnessFor (y, r) € R” x R define the continuous function

c(y,t) = maX{|uy(y, 1), £ € A, |min{0, vy (y,1)}|, k € B}.

Then, for(y, 1) € {(R" xR)\ Y'YV} we havec(y, t) > 0. Fory > 0 we obtain the
open coverind B, (Y V-V)), (R" x R)\ YY"} of R” x R. By selecting the constant
1to B, (Y¥V) as well as'? to (R” x R) \ ¥¥*V) and using a partition of unity
subordinate to this covering we obtairC&-neighbourhood? of (U, V) such that
YWY c B, (YWY andyW-Y)(r) is compact for alt € R and all(U, V) € ».
Upper semicontinuity Suppose that there exidt, V) € © andf € R such that
t — YUV)(1)is not usc at. Then, there exist & > 0 as well as sequenc¢s’}
(throughout the papar runs through the set of natural numbé&fsand{y"} with
t' — 1,y € YUV @y andd(y”, YV (t)) > y. However, the construction
yieldsy@V) c B, (YY-¥)) and, therefore, we have without loss of generality that
y' — ywith y € YW:V)(¢); this is a contradiction. O

Lemma 3.2 provides the following corollary.
COROLLARY 4.5. The setf; N CUSC is C?-open/dense i€? N CU SC.

The set BAP

We introduce the set BAP in order to avoid asymptotical effects; in fact, small
perturbations of the set ") might allow new feasible points to enter ‘from
infinity’. The following two typical examples illustrate these asymptotical effects:

EXAMPLE 4.6. Letr € R, Y; C R” be a closed subsef,c R” \ Y; and

Y@ =
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(cf. Figure 3b). Moreover, assume that there exists a seqyérice’)} ¢ H~1(0)\
MHEGCUVI with tv > £, 1" — 1, ||x"|| = oo andG (x”, y, t”) > O for all y e Yy (cf.
Figure 3a). Then, there exists an arbitrarily snggltperturbation of U, V) such
that for the perturbed vector functigt/, V) we havey U-V)(r) = Y, for all t from
a neighbourhood of (cf. Figure 3c); hence, we obtai’, t') € MH:GUV) je,
‘some new feasible points arrive from infinity’.

EXAMPLE 4.7. Letr e R, r =1, y! < y2andY V'V (¢) = [y, y?] forall r € R.
Furthermore, assume that there exist sequences:’) e H1(0)\
MHEGUY) with 1 — 7, ||x¥|| — oo as well agy"} c (y!, y?] with 3* — y' and
{y e b1y 11 G(x", y.1") < 0} = [yh, 3") (cf. Figure 4).

After perturbing(U, V) such thaty @V (¢) = [$, y2] for some$ € (1, y?) we
obtain(x’, ") € MH:G.U.V) i e, ‘an infinite feasible point becomes finite’.

The set BAP (abbreviation for ‘boundedness and properness’) is defined as the
following subset oC*(R” x R, R™) x CY(R" x R" x R, R) x C}(R" x R, R¢*?):
(H,G,U, V) e C*belongs to BARf and only if (U, V) € CUSC and there exist
an open se) C R" x R as well as a continuous functien R — (0, 1] with:

o cl MH-GU.V) = @ (where cl denotes the closure),

e for every compact st C R the set® N (R" x T') is bounded,

o for each(x,7) € H71(0) \ O there exists)(x,7) € MFYY)(¢) such that

G(x,y,t) <Oforally € cl B, (y(x, 1)), and

. cl( U {(y()z,f),f)}) C MFWY),

& 1)eH 1(0)\0

Obviously, in Example 4.6 we havéeH,G,U,V) ¢ BAP sincey ¢
MFYY)(t). In Example 4.7 the intervdly!, y”] shrinks to a point fon — oo.
Therefore, a continuous functianas in the definition of BAP cannot exist which
implies(H,G,U,V) ¢ BAP.

LEMMA 4.8. The set BAP i€ -open inC™.

Proof. The proof is given in 4 steps.

Step 1Assume thatH, G, U, V) € BAP. We will construct aC%-neighbour-
hood ¥, x 9, of (H, G) x (U, V) such thaty; x 9, ¢ BAP. By Lemma 4.4,
assume throughout the proof that the consideféeneighbourhood of U, V)
belongs to CUSC. The construction ®f x ¥, will be obtained by separate con-
structions on each stripg’ = {(x,y,t) € R" xR" xR | t € [v,v + 1]},

v € N, where, finally,; x ¥, is chosen in such a way that the requirements of

these separate constructions are met. Therefore, we focus our consideration on

the separate construction of a neighbourhood Bf G, U, V) restricted toJ°

(which is denoted by? x ¥9). Let #; = {(x,t) € H1(0) | t € [0,1]} and

B = {(y, t) € cI( U {(y(x, 1), t')}) |t e [0, 1]}, where, obviously, the
(*.0eH10)\0

latter set is compact.
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G(x3,.,3)
G(x2,-,£2)
G(xl’ %y tl)

<4
~<

Figure 4.

Step 2.Lemma 2.1, Lemma 2.2 and the compactnes®8ofimply that there
existz € (0, 3 min{e(?) | ¢ € [0, 1]}), and aCX-neighbourhood)? of (U, V) such
that for eachU, V) € 99 and eachy, 1) € Bi:

e MFYUY)(t)N B;(y) # ¥ for eacht e cl Bz(f) and

e Cl Bi:(B)NYYUY) ¢ MFWUV),

For (x,1) € #,\ O choose a neighbourhoddl (x, 7) of (x, ¢) such that we have
forall (x,1) e W(x,1):

e G(x,y,1) < @ forall y € ¢l B.;)(y(x,1)), wherey(x, ¢) is as in the
definition of BAP andy (z,7) = max{G(x,y,i) | y € ¢l B ($(X. 1))}
(obviously, itisy (x,t) < 0), and

ot —1]|<eé.

Therefore, fonx, ) € W(x,t) and(U, V) € 193 we obtain:

o there existy € MF-V) (1) N B;(y(x, 7)) and

e G(x,y,1) < % < Oforally € cl B: ().

Step 3For (£, 1) € (R"x[0, 1])\ (O UJ¢y) choose a neighbourhodd (%, 7 ) of
(,7) in such a way thap_ |h; (x, 1)| > Z 1hi @10 (“)' (> 0)forall (x, 1) € W(&, 7).

iel
Step 4.The construction prowdes a covern{@ {(Wx,t) | (x,1) € (R* x

[0,1]) \ O9}} of R" x [0, 1] and a coverind® x R", {W(x,t) x R" | (x,1) €
(R" x [0,1]) \ 0}} of R" x [0, 1] x R". Perhaps, after shrinking som®(x, 1),
choose a subcovering, {W(x¢,¢) | (x¢,#%) € (R" x [0,1D\ O, o € N}} of
R" x [0, 1], whereN cC N, such that for everp € N the set

Ne={oe N| W2, t2)N W2, %) # ¢}

is finite. Forg € N let N = {0 € N2 | (x°,1°) € #1} andNZ = N2\ N?.
By selecting 1 or® (respectively or® x R") and

[y (x91, 19)] 5 |h; (x92, 192)|
WG N, gy e g, 3o B 1)

min , eN@}
{ 2m 2= 2

iel
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on W (x2, 12) (respectively oW (x2, 12) xR"), o € N and using a partition of unity
subordinate to this locally finite subcovering we obtain a desired neighbourhjood
of (H, G). O

5. Deformation of M(¢)

In this section we characterize possible changes in the topological structure of
MHEGUY) (1) for varying t, where (H, G, U, V) is taken from an appropriate
subset that will be characterized in the following theorem.

THEOREM 5.1. The set

Fa={(H,G,U,V) e C>NBAP|.each(z,7) M}E;”G’U’V) is nondegeneratd

.each(y,7) € Yb(;/’v) is nondegenerate

VY@ + MOV (7)) < Lfor each
t € Rand

« there is a set as in the definition of BAP
such that;
if (EMFCQ)does not hold at an

(x,D)eH0)Nnclo, theny, (7)) =9

is C2-open/dense i€2N BAP.

Proof. Density. By the proof of Theorem 4.%; is C2-dense inC> N BAP.

Openess.et (H, G, U, V) e %3 with a corresponding sé. We will construct
a C2-neighbourhood? of (H, G, U, V) such thaty C 3. By Lemma 3.2 and
Lemma 4.8, there exists an opé€d-neighbourhood? of (H, G, U, V) such that
forall (H,G,U, V) € v:

o each(y,1) e v,;"" is nondegenerate and

e (H,G,U,V)e BAP withcl MHGUV) <« @,

Without mentioning that again, the following constructionsfwill be done in
such a way thap c 0.

We distinguish the following three cases.

Case 1: (x,1) € MH-:G.U.V) and (EMFCQ) holds at € MH-6.U.V)(£), Then,
by using continuity arguments, a moment of reflection shows that there exist neigh-
bourhoodsU(x, 7) of (x,7) and® (x,7) of (H, G, U, V) such that we obtain for
all (H,G,U,V) e 9(x,t)and all(x, t) € U(x, 1) N MHEGCUY) that (EMFCQ)
holds atx € MH-C-UVIr).

Case 2: (x,7) € MIS;”G’U’V). Obviously, (x, 7) is nondegenerate. Then, by
using again continuity arguments it is easy to see that there exist neighbourhoods
U(x, 1) of (x,7)andd (x,7)of (H, G, U, V) such that we obtain for all#, G, U,

V) e f)andall(x,r) € UG, T) N My @YY that(x, 1) is nondegenerate.
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Case 3: (x,r) eclO\ MUHG.O.V)

PROPOSITION.There exist neighbourhoodsl(x, ) of (x,7) and ¢ (x, ) of
(H,G.U,V) such that(x,t) ¢ M, "@"" for all (H,G.U,V) € 9#(&.7)
and all (x, 1) € UG, t).

Proof of the Proposition.Suppose that there are sequen¢és’, ¥)} and
{(H",G", U, V")} satisfying:
o (x",t") = (x,t
o (xV, t)eM(HUGVUUV)
o hl(x",t") — hi(x,7),i€I;in particular,i(x",t") = 0,i € I implies
(x,7) e HY0)nclo and thereis a € YUV () with

G(%,y,7) <O. (5.1)

¢ (EMFCQ) does not hold at’ € M"":G"-U"-V") (") and, thus, (EMFCQ) also
does not hold af € H. *(0); that impliesy V- (7) = MFY-") (7).

o YUNVH () ~ YW.V)(§) (which follows from the latter fact and Lemma 2.1)
with the homeomorphism

¢" YOV (E) — YUV,

where¢’(y) — y.
e G'(x",9"(y),t") — G(x,y,1). Then,G"(x", ¢"(y),t") > 0 contradicts
(5.1) and Proposition is proved.

From Cases 1, 2 and 3 we obtain a coverffyx,7), (x,7) € cl @} of cl O.
After selectingy (x, t) onU(x, ¢ ) for every(x, 7) € clO we get straightforwardly
ac?- -neighbourhood? of (H, G, U, V) such that for allH, G, U, V) € ¢ each
& 1) e M “"is nondegenerate.

We obtain the desired neighbourho®dfter a—possible—shrinking d@f such
that for all(H, G, U, V) € ¥ we have

o ¥, (7) = ¥ in case that (EMFCQ) does not hold at@7) € H~1(0) N

clo, and

o 1V, ()| + MYV (@)] < 1 for eacht e R. 0

LEMMADL.2. Let(H,G,U,V) € ClA be fixed with(U, V) € CUSC as wgll as
t € R, W a neighbourhood of and M C R" a compact set witi/(tr) c M for
all r € 'w. Assume thatEMFCQ) holds at allx € M(z) and that the mapping

t— Y(t) islscat 1. (5.2)

Then, there exists a neighbourho®dof ¢ such thatM (1) ~ M () forall t € V.
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Proof. We distinguish two cases.
Case 1. M(r) = @. Suppose that there exist sequenfés, {x"} with 1" —
7, x" € M(t), M(t") C M andx” — x. Then, there exist @ € Y () with
G(x,y,t) <0and, by (5.2)y" € Y (") with y* — yandG(x", y”, ") < 0. This
is a contradiction.
Case 2. M(t) # @. Since the proof runs in a way analogous to the proof of [3,
Theorem B] (in [3, Theorem B] it is assumed ttH#ite C?; the proof forH e C*
is given in [8]) we will only recall the main ideas and restrict ourselves to the case
I = @. Obviously, itisoM(r) # #. Since (EMFCQ) holds atall € M (z), choose
for everyx € M (r) a vectorg* € R” with ||€¥|| < 1 andD,G(x, f, y)€° > 0 for
all y € Yo(x, 1). By continuity, there are neighbourhootlgx) of x andV(z) of
t such that for allx, 1) € U(x) x V(f) we haveD,G(x, y,t)é* > Oforall y €
Yo(x, t). By selecting Oc R” onR" \ dM (¢ ) and&é* on U (x) for x € dM(r) and
by using a partition of unity subordinate to the cover{fig(x), x € aIM (), R" \
oM (1)} of R* we obtain a bounded, and, therefore, completely integrable vector
field £ € CY(R", R") with the following properties, wheré (x, ) denotes the
flow of &:
o if x €cdM(t),thenD,G(x, y,t)é(x) > 0forally € Yo(x,7), and
o thesetN® = {¥(x,7) | x € IM(t), T € (—¢, ¢)} is an open neighbourhood
of oM (t) for anye > 0.
Now, lete > O be arbitrarily chosen and fixed. Then, by (5.2), it is easy to verify
that there exists a neighbourho®dof  such that for alk € V:
o M(1) C M(1)U N,
(as an example that the lower semicontinuity (5.2) is needed we prove the
latter term: Suppose that there are sequericgs {x"} with ¥ — 7, x” €
(M(t”) \ (M(t)U Ns)), x" — x and, thusx ¢ M(r). Then, there exist
y € Y(t) with G(x, y,7) < 0 and, by (5.2), a sequen¢g’} with y” — ¥,
y e Y(@@”)andG(x", y¥, ") < 0. This is a contradiction.)
o M(t)\ N¢ C M(7),
o IM(1) C N,
o if x € 0M(t),thenD, G (x, y,1)é(x) > Oforall y € Yo(x, 1),
e for eachx € dM (1) there exists a uniquely determined integration time
t(x) € (—e,e) with {¥(x,7) | T € Ry NaM(@) = {¥(x, t(x))} and the
corresponding function

T:X€edM(@) > T(X)=vy(x, (X)) € aM()

is a homeomorphism.
Then, for eachr € V the desired homeomorphism, which maysz ) onto
M(r), is constructed by means &f and, in particular, it is the identity o (¢ ) \
N, o
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Summary

Finally, we discuss possible changes in the topological structupé@f¢-V:-") ()
for varyings, where(H, G, U, V) is chosen from the sef;. By Theorem 5.1 and
Lemma 4.8, the seF; is C?-open/dense i@2N BA P and the latter set i€2-open
in C2.

The following situation which is assumed in the remainder of this paper for a
fixed vector function(#, G, U, V) € #3 is typical for mappings fron¥s:

o there existy, 1, with 1, < , and a compact séf C R” such thatM (r) C M

forall t € [14, 1], and

o [(Mp, N(R" x [12, 21))] + |(¥Ypp N (R" x [12, 22]))] < 1 )

if My, N(R"x[t1, 2]) is asingletor{(x, t )}, thent € (11, 1) and(x, ) € M,
is nondegenerate as well as

if Y5, N(R" x [t1, 12]) is a singletor{(y, 7 )}, thent € (11, 1) and(y, 1) € Yy,
is nondegenerate.

Then, we obtain the following five possible cases for a change in the topological
structure ofM (¢):

Case 1:M;, N (R" x [t1,12]) = P and Yy, N (R" x [t1,12]) = @. Then, by
Lemma 2.1 and Lemma 5.2/ (t;) >~ M(1).

Case 2:M;,, N (R" x [t1, 2]) = 0, Y}, N (R x [11, 12]) = {(y, 1)} and (¥, 1)
is of Type 1a or 2a (cf. Section 3). Then, the change in the topological structure of
M (t) might be quite arbitrary (cf. Example 1.1) and, hence, a general description
of this case is not possible.

Case 3:M,, N (R" x [t1, 12]) = B, Vi, N(R” X [t1, 2]) = {(y, 1)} and(y, 1) is
of Type 1b or 2b. Then, by Lemma 3.5 and Lemma B42¢,) >~ M (1,).

Cases 4 and 5M,, N (R" x [11, 2]) = {(x, 1)} andY,, N (R" x [11, 12]) = 0.
Then, (RA) is applicable at € M(t ) and, thereforeM (¢ ) can be described locally
aroundx as in (2.4) andx, ¢ ) is a nondegenerate bifurcation point dfrate prob-
lem. As shown in Section 3, 7 ) is either of Type 181, §5) (Case 4) or of Type 2
(81, 82, 83, 84) (Case 5), where the Type-numbedis, §,) and (81, &2, 83, 84) are
analogously determined. The corresponding changes in the topological structure
are given in Theorem 3.3.

We summarize these 5 cases in the following overview:

Case My, N (R" x|[t1, 12]) Ypp N(R"x[t1,22]) Change of the topological
structure ofM (1)

1 Y] Y M(ty) =~ M(tp)

2 @ {(3,1)} is of global nature and is not
(Type laor2a) controllable in general

3 0 {3, 1)} M (1) = M(t2)
(Type 1b or 2b)
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4 {(x,1)} @ M (1) is obtained fromM (z71)
(Type 1(81, 82)) by deletings®2—1x p%1-%2 and
implanting D% x §%1—%2-1,
5 {(x,1)} @ 84 = 1 : M(rp) is homotopy-
(Type 2(81, 82, 83, 84)) equivalent toM (1) with D2
attached.

84 = —1: M(t7) is homotopy-
equivalent toM(rp) with D%
attached.
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